Nanovehicles for delivery of antigens and adjuvants as cancer nanovaccines
Abstract
Cancer vaccines offer a promising strategy for immunotherapy by stimulating the immune system to target and destroy cancer cells. Antigens and adjuvants have been recognized as important components for the preparation of cancer vaccines, with antigens as the keys for immune cells to recognize cancer cells and adjuvants stimulating potent immune effects. Nanovehicles offer great potential advantages for construction of cancer vaccines, including enhanced antigen loading, co-assembly of antigens and adjuvants, targeted delivery, and antigen and adjuvant effects. By leveraging diverse nanovehicles, along with tumor antigens and/or adjuvants, various cancer nanovaccines have been developed, resulting in enhanced immune responses and facilitating the creation of personalized vaccines. This review presents the progress of cancer nanovaccines in clinical trials, systematically summarizing the physicochemical properties and roles of nanovehicles in the delivery of antigens and adjuvants as cancer nanovaccines, including inorganic nanoparticles, polymeric nanovehicles, nanoengineered coordination polymers, lipid nanovehicles, biomimetic nanovehicles, virus-like particles, and self-assembled peptide vehicles. We further discuss challenges in clinical translation and provide insights into future advancements in cancer nanovaccines.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles