Quercetin-doped sol–gel coatings on titanium implants: a promising approach for enhanced immune response and cell adhesion†
Abstract
Quercetin (QUE), a natural flavonoid found in various fruits and vegetables, has diverse biological functions, including anti-inflammatory effects, regulation of cell adhesion and oxidative stress mitigation. In this study, sol–gel materials with increasing concentrations of quercetin (0.5, 1 and 2 wt%) were synthesised and applied onto titanium (Ti) surfaces as coatings. The materials were characterised physiochemically, and in vitro responses were examined using HOb osteoblastic cells and THP-1 macrophages. Human serum protein adsorption was evaluated using nLC-MS/MS. The incorporation of quercetin did not affect the sol–gel network cross-linking, and a controlled release of quercetin was achieved. The materials exhibited no cytotoxicity at any concentration. The HOb cells cultured on quercetin-doped materials were more elongated than those grown on QUE-free coatings, with protruding lamellipodia and increased cell surface. QUE-doped surfaces enhanced the expression of BMP-2, RANKL, and cell adhesion-related genes CTNNB1 and β-actin. In the THP-1 cells, pro-inflammatory gene expression (IL-1β, MCP-1 and iNOS) was down-regulated on 0.5QUE material, while it increased on 2QUE, as did the cytokine liberation. These changes correlated with altered protein adsorption patterns. The 2QUE coatings enhanced the adsorption of acute-phase proteins (SAA1, SAA2 and SAA4), indicating an inflammatory response; this behaviour was not seen on 0.5QUE. Moreover, cell adhesion (COF1, PROF1) and oxidative stress proteins (GPX3, SEPP1, AMBP) were preferentially adsorbed onto QUE-doped coatings. These results highlight the significance of optimising quercetin concentration in sol–gel coatings to modulate the immune response and enhance cell adhesion effectively.

Please wait while we load your content...