Issue 16, 2025

CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring

Abstract

Soft, stretchable, and smart strain-sensing hydrogels have attracted significant attention due to their broad applicability in emerging fields. However, developing hydrogel-based strain-sensing materials with finely tuned mechanical and sensing properties remains challenging, primarily due to the inherent brittleness of traditionally fabricated hydrogels. In this study, a novel flexible strain- and epidermis-sensitive sensor was designed using a cellulose nanocrystal (CNC)-mediated acid functionalized multiwalled carbon nanotube (A-MWCNT)-reinforced double-network conductive hydrogel. This dual-network hydrogel system was fabricated by integrating a covalently crosslinked acrylamide (Amm) and [2-(acryloyloxy) ethyl] trimethyl-ammonium chloride (AETAC) with a physically crosslinked network of A-MWCNTs, which were uniformly dispersed via CNCs. Incorporating hydrogen bonding and strong electrostatic interactions within the physical network introduced reversible sacrificial bonds, significantly enhancing the hydrogel's mechanical strength. The hydrogel exhibited mechanical and sensing performance, including sufficient stretchability (431.6%), remarkable sensitivity, a gauge factor (GF) of 4.32 at 400% strain, toughness of 65.6 kJ m−3, Young's modulus of 1.5 kPa, and rapid response and recovery times of 100 msec. Furthermore, it demonstrated excellent cycling stability over 100 cycles and effective sensing capabilities across a broad strain range, from small deformations (5%) to large strains (400%). The conductivity of 0.09 S m−1, facilitated by the formation of conduction pathways through the AETAC and A-MWCNTs, further enhanced its performance. Moreover, the hydrogel exhibited practical applicability in detecting various large-scale and physiological human movements. Functioning as a wearable electronic skin, it represents a highly flexible and adaptable material suitable for applications in soft robotics, flexible sensors, and health monitoring devices.

Graphical abstract: CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2024
Accepted
13 Mar 2025
First published
18 Mar 2025

J. Mater. Chem. B, 2025,13, 4796-4808

CNC-mediated functionalized MWCNT-reinforced double-network conductive hydrogels as smart, flexible strain and epidermic sensors for human motion monitoring

H. Hassan, M. Khan, L. A. Shah and H. Yoo, J. Mater. Chem. B, 2025, 13, 4796 DOI: 10.1039/D4TB02709D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements