Operando XPS and NEXAFS to link the OER mechanism with the fast electro-oxidation of organic pollutants on a porous NiMnO3–rGO anode

Abstract

Electro-oxidation is one of the most promising and eco-friendly technologies for water decontamination. However, its industrial application is still limited by the high cost, poor faradaic efficiency, low durability, and potential toxicity of common high-power oxidation anodes. These challenges have been addressed by developing a novel composite comprising a mixed metal oxide (NiMnO3) and reduced graphene oxide (rGO). The NiMnO3–rGO anode allowed the fast and complete removal of phenol. Among different highly porous substrates, graphite felt (GF) led to the highest energy efficiency, since the GF/NiMnO3–rGO anode yielded 100% phenol removal within only 30 min at a current density as low as 10 mA cm−2, which was accompanied by 85% COD removal at 120 min. This anode demonstrated excellent stability, maintaining 100% phenol removal efficiency across five consecutive cycles while also showing low energy consumption (60–65 Wh (kg COD)−1). Operando X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) analysis provided mechanistic insights. It is demonstrated that rGO shifts the ˙OH production pathway towards the lattice oxygen mechanism (LOM), in contrast to the adsorbate evolution mechanism (AEM) observed for NiMnO3 alone. This mechanistic shift supports the enhanced stability and sustained electrocatalytic activity, contributing to the high performance of the GF/NiMnO3–rGO composite anode in the context of a more sustainable technology for treating organic contaminants.

Graphical abstract: Operando XPS and NEXAFS to link the OER mechanism with the fast electro-oxidation of organic pollutants on a porous NiMnO3–rGO anode

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
02 Jul 2025
Accepted
17 Oct 2025
First published
30 Oct 2025
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2025, Advance Article

Operando XPS and NEXAFS to link the OER mechanism with the fast electro-oxidation of organic pollutants on a porous NiMnO3–rGO anode

K. Mirehbar, S. Kumar, I. Sirés, J. S. Sánchez, G. Held, J. Palma and J. J. Lado, J. Mater. Chem. A, 2025, Advance Article , DOI: 10.1039/D5TA05337D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements