Coordination-driven safer and sustainable energetic materials†
Abstract
The convergence of performance optimization and environmental stewardship has positioned coordination-driven approaches at the forefront of energetic material innovation. Now, using 3,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazine and N,N′-(1,2,4,5-tetrazine-3,6-diyl)dinitramide as precursors (P1 and P4), we have synthesized various coordination-driven polymeric energetic frameworks with potential applications as energetic materials, pyrotechnics, and solid propellants. Unique temperature-controlled reactivity of N,N′-(1,2,4,5-tetrazine-3,6-diyl)dinitramide with bases such as ammonia and alkali metal hydroxides are now reported, which results in the synthesis of new materials in a straightforward manner. These frameworks exhibit high thermal stability, controllable sensitivity, and tunable energy densities, making them versatile candidates for modern energetic applications. Furthermore, coordination-driven syntheses allow for precise structural control, enabling the fine-tuning of properties to meet specific requirements. The environmentally conscious design of these materials emphasizes the reduction of toxic byproducts which align with global sustainability goals.

Please wait while we load your content...