Issue 15, 2025

An anti-freezing flexible polymer electrolyte for high-performance zinc-ion batteries

Abstract

Aqueous rechargeable zinc-ion batteries (ZIBs) encounter several challenges that hinder long-term performance and stability due to the water-induced side reactions, dendrite growth, and limited low-temperature operation, which are mostly associated with water freezing. In this study, the anti-freezing properties of a novel polymer electrolyte composed of a PAES-g-PEG and H2O/EG based eutectic solution are examined for ZIB application. The optimized polymer electrolyte (1.0 M Zn–eutectic–SPE) demonstrates excellent performance, achieving an ionic conductivity of 2.46 mS cm−1 and a zinc transference number of 0.69 at room temperature (RT). Notably, it maintains a high ionic conductivity of 0.19 mS cm−1 even at −20 °C. Moreover, the 1.0 M Zn–eutectic–SPE not only possesses a high tensile strength (4.18 MPa) with excellent flexibility, but also provides a high oxidative stability window (up to 2.5 V). Apart from its application as an electrolyte component, the synthesized PAES-g-PEG (without H2O/EG) is also utilized as a binder material for electrode preparation. The anti-freezing Zn|V10O24·nH2O@rGO battery fabricated with 1.0 M Zn–eutectic–SPE demonstrates exceptional electrochemical performance. At RT, it delivers high reversible capacities of 306.4 mA h g−1 at 1.0 A g−1 and 101.5 mA h g−1 at 20 A g−1. Notably, even at −20 °C, the ZIB maintained impressive capacities of 277.7 mA h g−1 at 0.05 A g−1 and 63.2 mA h g−1 at 2.0 A g−1. Remarkably, the Zn|V10O24·nH2O@rGO cells exhibit excellent cycling stability. After 300 cycles at a current density of 1.0 A g−1, they retain 87% of their initial capacity at RT and 91% at −20 °C. Furthermore, at RT, the Zn|V10O24·nH2O@rGO cell demonstrates outstanding long-term cycling performance, maintaining 83% capacity retention even at a high current density of 10 A g−1. These results confirm that the developed SPE enables stable ZIB operation over a wide temperature range, ensuring reliable performance in diverse environmental conditions.

Graphical abstract: An anti-freezing flexible polymer electrolyte for high-performance zinc-ion batteries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Dec 2024
Accepted
10 Mar 2025
First published
20 Mar 2025

J. Mater. Chem. A, 2025,13, 10980-10990

An anti-freezing flexible polymer electrolyte for high-performance zinc-ion batteries

H. Lee, R. Puttaswamy, A. Le Mong and D. Kim, J. Mater. Chem. A, 2025, 13, 10980 DOI: 10.1039/D4TA09111F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements