Issue 4, 2025

Formation of lattice vacancies and their effects on lithium-ion transport in LiBO2 crystals: comparative ab initio studies

Abstract

The monoclinic (m-LBO) and tetragonal (t-LBO) polymorphs of the lithium metaborate (LiBO2) material have significant potential for technological applications such as solid electrolytes and electrode coatings of lithium-ion batteries. While comparative studies of electronic, ionic, and photonic properties in these polymorphs exist, the role of lattice vacancies in lithium-ion transport in these polymorphs remains unclear. In this study, we employed density functional theory (DFT) to investigate the formation of lattice vacancies and their impacts on the lattice structure, electronic properties, and the lithium-ion migration energy barrier (Em) in both m-LBO and t-LBO. Our DFT results reveal that boron and oxygen vacancies affect the lithium-ion transport in both the polymorphs, but in different ways. While oxygen vacancies lower Em in m-LBO, they increase it in t-LBO. In contrast, boron vacancies significantly reduce Em in both m-LBO and t-LBO, leading to a remarkably enhanced ionic conductivity in both the polymorphs. This enhancement in the ionic conductivity could be due to favorable alterations in the crystal and electronic structures caused by the presence of boron vacancies. This improvement suggests a potential strategy for improving the ionic conductivity of the LiBO2 material through boron vacancy generation. For example, boron vacancies might be created in the lattice structures of the LiBO2 material using controlled neutron irradiation.

Graphical abstract: Formation of lattice vacancies and their effects on lithium-ion transport in LiBO2 crystals: comparative ab initio studies

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Aug 2024
Accepted
05 Dec 2024
First published
10 Dec 2024
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2025,13, 3146-3162

Formation of lattice vacancies and their effects on lithium-ion transport in LiBO2 crystals: comparative ab initio studies

C. D. Ziemke, H. M. Nguyen, S. Amaya-Roncancio, J. Gahl, Y. Xing, T. W. Heitmann and C. Wexler, J. Mater. Chem. A, 2025, 13, 3146 DOI: 10.1039/D4TA05713A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements