Unveiling the synergistic potential of LaMnO3–CeO2 composites in supercapacitor applications
Abstract
This study investigates the synthesis of LaMnO3–CeO2 composites with varying CeO2 contents ((100 − x)% LaMnO3–x% CeO2; x = 0, 10, 30, 50, 100 wt%) via an autocombustion method to elucidate their synergistic electrochemical properties. X-ray diffraction (XRD) confirmed the presence of both LaMnO3 (LMO) and CeO2 phases in the anticipated stoichiometric ratios. Nitrogen adsorption–desorption isotherms revealed a mesoporous structure, with the LMO–CeO2 (70 : 30) composite exhibiting the highest specific surface area of 14.32 m2 g−1, as determined by the Brunauer–Emmett–Teller (BET) method. X-ray photoelectron spectroscopy (XPS) provided insights into the ion valences and chemical composition of the composites. Electrochemical performance was evaluated in a 1 M KOH aqueous electrolyte using a three-electrode configuration. The LMO–CeO2 (70 : 30) composite demonstrated superior performance, achieving a specific capacitance of 830.3 F g−1 at a scan rate of 1 mV s−1 and 637.6 F g−1 at a current density of 1 A g−1, corresponding to an energy density of 31.9 Wh kg−1 at a power density of 357.5 W kg−1. These results underscore the synergistic enhancement of electrochemical properties through the integration of LaMnO3 and CeO2, offering significant potential for the development of high-performance materials for energy storage applications.

Please wait while we load your content...