Unraveling the role of water in catalytic glycolysis of PET

Abstract

The chemical recycling of polyethylene terephthalate (PET) via glycolysis is a promising route for recovering the monomer bis(2-hydroxyethyl) terephthalate (BHET), which can be used for virgin-grade PET production. However, the influence of water—an inevitable impurity and potential byproduct—on this process is complex and not fully elucidated. This study systematically investigates the effect of water content (0–22.2 vol%) on PET glycolysis using selected heterogeneous catalysts (ZnO and Mn2O3) and homogeneous catalysts (zinc acetate (ZnAc2), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)). Product distribution and reaction kinetics were quantified by HPLC and in situ IR spectroscopy, respectively. The heterogeneous catalysts (ZnO and Mn2O3) and homogeneous ZnAc2 retained high PET conversion (>95%) even at elevated water concentrations. Nevertheless, the BHET yield and selectivity for these systems decreased significantly due to a competing hydrolytic side reaction, promoted by water, which yields terephthalic acid (TPA). Notably, ZnAc2 exhibited a more rapid decline in BHET selectivity compared to ZnO. Conversely, the organic base catalysts TBD and DBU experienced complete deactivation in the presence of water, resulting in a drastic reduction in both PET conversion and BHET yield, with DBU showing greater susceptibility. In situ IR experiments corroborated that the deactivation mechanism for TBD involves protonation by water. These results emphasize that water's influence is a function of the catalyst's chemical nature, modulating product selectivity for metal-based systems while causing the deactivation of organic bases. Understanding these divergent effects is critical for the optimization of industrial PET glycolysis and the rational design of water-tolerant catalytic systems.

Graphical abstract: Unraveling the role of water in catalytic glycolysis of PET

Supplementary files

Article information

Article type
Paper
Submitted
30 Jun 2025
Accepted
13 Aug 2025
First published
13 Aug 2025
This article is Open Access
Creative Commons BY-NC license

RSC Sustainability, 2025, Advance Article

Unraveling the role of water in catalytic glycolysis of PET

Z. Jia, J. Zhang, L. Gao, H. Sun, J. Chen, L. Qin and J. Yin, RSC Sustainability, 2025, Advance Article , DOI: 10.1039/D5SU00528K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements