Recent advances in MOFs, MOF-derived materials and their composites as electrocatalysts for hydrogen production
Abstract
Climate change, global warming, and other adverse environmental impacts are largely driven by carbon dioxide (CO2) emissions. One promising pathway to mitigate these issues is the growing eco-friendly hydrogen production technologies. Hydrogen, as a clean energy carrier, has the potential to transition industries toward decarbonization. Amongst the numerous hydrogen production approaches, water splitting via electrocatalysis presents a sustainable route. However, achieving huge productivity in the hydrogen evolution reaction (HER) requires advanced catalytic agents with enhanced active sites, huge porosity, and robust adaptability. Recently, materials based on metal–organic frameworks (MOFs) have received more consideration in electrocatalysis for environmental remediation and energy. The metal component of MOFs typically consists of metal ions (often transition metals) or metal clusters. These metal ions act as the nodes in the framework, coordinating with the organic ligands. The choice of metal determines the chemical properties, stability, and reactivity of the MOF. Numerous MOF-based materials were effectively established for the applications of the hydrogen evolution process. To produce hydrogen, this review article examines various MOF-related electrocatalysts, which include MOF-derived metals, metal oxides, metal phosphides, metal nitrides, metal chalcogenides, dichalcogenides, and their composites. Furthermore, the pros and cons of various MOF-based materials as water-splitting catalysts are discussed. Lastly, the present challenges and future prospects of these materials as electrocatalysts are also discussed.
- This article is part of the themed collection: RSC Sustainability Recent Review Articles