A scientometrics study of advancing sustainable metal recovery from e-waste: processes, challenges, and future directions
Abstract
The growing generation of electronic waste (e-waste) presents significant environmental and economic challenges while offering opportunities for resource recovery through the extraction of valuable metals. This study employs bibliometric analysis to examine global research trends in metal recovery from e-waste, identifying China, the United States, and India as the most productive countries, with Journal of Hazardous Materials and Waste Management being the leading publication venues. The analysis also reveals a strong collaboration network among key research institutions, contributing to advancements in recovery techniques. The study further explores various extraction methods, including pyrometallurgical, hydrometallurgical, and biometallurgical processes, assessing their efficiency and sustainability. Hydrometallurgical methods, particularly acid leaching and solvent extraction, show up to 95% metal recovery efficiency, while biometallurgical approaches demonstrate a potential 30–50% reduction in environmental impact compared to conventional chemical methods. The findings highlight the growing emphasis on sustainable recovery strategies, policy interventions, and circular economy principles. The study concludes that continuous technological innovation, strengthened regulatory frameworks, and increased public engagement are essential to advancing metal recovery technologies. By integrating efficient extraction methods with sustainable waste management policies, the global e-waste crisis can be mitigated while ensuring long-term resource conservation.
- This article is part of the themed collection: RSC Sustainability Recent Review Articles