Fatty acid foams for nonselective physical removal of microplastics from aqueous solutions

Abstract

Microplastics (MPs) are pervasive environmental contaminants whose removal from water remains a major challenge due to their small size, chemical diversity, and dynamic surface properties arising from environmental aging/weathering. Here, we present a concept of foam-based separation method that physically traps MPs in the foam phase using microtubular assemblies of 12-hydroxystearic acid. These foams are stabilized by anisotropic fatty acid microtubules formed in the presence of ethanolamine, which jam within the foam channels and suppress fluid drainage thereby enhancing MP retention and foam stability. MPs of different sizes, polymer compositions (including polystyrene, polypropylene, polyethylene terephthalate, and polytetrafluoroethylene), and weathered states were retained in the foam phase without requiring chemical modification or relying on chemical interactions between the fatty acid and MPs. Thermally induced transition of the fatty acid microtubules into nanomicelles above the characteristic phase transition temperature (∼35 °C) enables controlled foam collapse and recovery of trapped MPs. The cumulative removal efficiency can exceed 85% through multiple foaming cycles, matching predictions from a probabilistic retention model. This work shows that foams can provide a simple platform to trap MPs, thus providing a new physical-removal strategy that does not rely on the particles’ chemistry.

Graphical abstract: Fatty acid foams for nonselective physical removal of microplastics from aqueous solutions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Aug 2025
Accepted
15 Oct 2025
First published
23 Oct 2025

Soft Matter, 2025, Advance Article

Fatty acid foams for nonselective physical removal of microplastics from aqueous solutions

K. A. Guillot, P. J. Brahana, J. C. Romanos, G. Rother, M. G. Benton and B. Bharti, Soft Matter, 2025, Advance Article , DOI: 10.1039/D5SM00850F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements