Engineering snags for spatial curvature in weaves: Fabrication, mechanics, and inverse design

Abstract

Weaving as an old craft has extensive applications in modern science and technology such as smart textiles and intelligent soft robots. However, weaving irregular curved surfaces has been difficult, with prior alternatives requiring curved ribbons and triaxial weaving patterns. In this work, we present a simple strategy to achieve complex spatial curvature by purposely introducing 'snags', a traditionally unwanted textile defect, into dense plain weaves consisting of straight ribbons assembled in a straightforward biaxial network. We detail the fabrication methodology where we pull out ribbons of initially smooth two- (2D) and three-dimensional (3D) plain weaves to form local snags. We show that these local defects cause global curvatures through the propagation of geometric frustration. We then use a reduced-order bar & hinge model to simulate the mechanics-guided deformation of snagged plain weaves, and we investigate how the curvature scales with system parameters such as the thickness and Young's modulus of the ribbons. Finally, we introduce an inverse design platform where an evolutionary algorithm is used to inversely compute the optimal snag patterns of smooth plain weaves to approximate arbitrary target surfaces including 2D and 3D woven exoskeletons that fit human legs and elbows, respectively. Engineering snags in plain weaves as a general strategy can pave the way for future design of customizable wearable devices, adaptive soft robots, reconfigurable architecture, and more.

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2025
Accepted
16 Oct 2025
First published
24 Oct 2025
This article is Open Access
Creative Commons BY license

Soft Matter, 2025, Accepted Manuscript

Engineering snags for spatial curvature in weaves: Fabrication, mechanics, and inverse design

G. W. Tu and E. T. Filipov, Soft Matter, 2025, Accepted Manuscript , DOI: 10.1039/D5SM00813A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements