Directed assembly of binary suspensions of magnetizable ellipsoids

Abstract

We investigate the effect of particle anisotropy and magnetic properties on the directed assembly of binary suspensions of magnetizable ellipsoids in a two-dimensional confinement. A suspension of paramagnetic spheres and diamagnetic ellipsoids in a superparamagnetic medium is subjected to a uniform magnetic field that is perpendicular to the assembly plane. We implement the ellipsoid-dipole model in a Monte-Carlo simulation to analyze the effects of particle aspect ratio, medium permeability, and relative particle concentrations on the assembly of binary suspensions of ellipsoids. We validate the simulations by comparing the orientational symmetry of binary structures of magnetizable spheres with previously reported experiments. Simulation results for a binary suspension of paramagnetic and diamagnetic spheres show structures with tunable orientational symmetry as medium permeability increases. Additionally, the results for the directed assembly of paramagnetic spheres and diamagnetic ellipsoids show tunable open-packed triangular enclosures and interconnected chain-like structures with different local order. The simulation results show the potential for customizing the assembled structures by tuning both medium and particle magnetic properties in binary colloidal suspensions.

Graphical abstract: Directed assembly of binary suspensions of magnetizable ellipsoids

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2025
Accepted
12 Sep 2025
First published
15 Sep 2025

Soft Matter, 2025, Advance Article

Directed assembly of binary suspensions of magnetizable ellipsoids

D. H. Harris and I. Torres-Díaz, Soft Matter, 2025, Advance Article , DOI: 10.1039/D5SM00755K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements