Why epithelial cells collectively move against a traveling signal wave

Abstract

The response of cell populations to external stimuli plays a central role in biological mechanical processes such as epithelial wound healing and developmental morphogenesis. Wave-like propagation of a signal of ERK MAP kinase has been shown to direct collective migration in one direction; however, the mechanism based on continuum mechanics under a traveling wave is not fully understood. To elucidate how the traveling wave of the ERK kinase signal directs collective migration, we constructed the mechanical model of the epithelial cell monolayer by considering the signal-dependent coordination of contractile stress and cellular orientation. The proposed model was studied by using an optogenetically-controlled cell system where we found that local signal activation induces changes in cell density and orientation with the direction of propagation. The net motion of the cell population occurred relative to the wave, and the migration velocity showed a maximum in resonance with the velocity of the ERK signal wave. The presented mechanical model was further validated in in vitro wound healing process.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
21 Apr 2025
Accepted
29 Aug 2025
First published
01 Sep 2025

Soft Matter, 2025, Accepted Manuscript

Why epithelial cells collectively move against a traveling signal wave

T. Fukuyama, H. Ebata, A. Yamamoto, R. Ienaga, Y. Kondo, M. Tanaka, S. Kidoaki, K. Aoki and Y. T. Maeda, Soft Matter, 2025, Accepted Manuscript , DOI: 10.1039/D5SM00403A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements