Issue 19, 2025

Granular flow of 3D mixtures of soft and hard spheres

Abstract

The discharge of granular mixtures composed of hard frictional beads and soft low-friction beads was investigated in a cylindrical silo in experiments and numerical simulations. In the two limits, we find a fill height dependent flow rate for 100% low friction soft grains and a height independent flow rate for 100% hard frictional grains. When mixing the two types of grains, the transition between the two limiting cases occurs rather abruptly. Namely, adding only 20% of hard frictional grains to a sample of low friction soft grains changes the dependence of the flow rate on the discharged mass significantly, i.e. causes the slope of the curve to decrease by 50–70%. Our numerical simulations reveal that the main factor leading to the strong change in the flow rate behavior at low hard grain concentration is the high sensitivity of the stress conditions in the orifice region to the mixture composition. Since frictional dissipation can be an important factor influencing the flow rate, we also analyze the frictional properties of our samples in two additional experiments: (i) quasistatic shear tests in a split-bottom shear cell and (ii) drag force measurements on an object moved in the mixture. The mixtures show increasing dissipation as a function of increasing hard grain concentration in both of these measurements, but the increase is rather modest in the low concentration range, thus it does not explain the abrupt change in the silo discharge rate.

Graphical abstract: Granular flow of 3D mixtures of soft and hard spheres

Supplementary files

Article information

Article type
Paper
Submitted
07 Apr 2025
Accepted
08 Apr 2025
First published
21 Apr 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025,21, 3859-3867

Granular flow of 3D mixtures of soft and hard spheres

B. Fan, T. Pongó, J. A. Dijksman, J. van der Gucht and T. Börzsönyi, Soft Matter, 2025, 21, 3859 DOI: 10.1039/D5SM00354G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements