Unravelling the self-assembly of a novel cationic pseudo-gemini surfactant and its monomeric counterpart: interactions with DNA and BSA in aqueous medium at neutral pH†
Abstract
The demand for sustainable, efficient, and easily tunable cationic surfactants is growing rapidly due to their pivotal role in gene therapy, drug delivery, and biotechnology. However, conventional gemini surfactants often require laborious synthesis and lack design flexibility. Here, we introduce a novel pseudo-gemini surfactant system, innovatively constructed through simple non-covalent electrostatic interactions between a hydrophobic tertiary amine and a dibasic acid. This minimalist design approach bypasses traditional synthetic complexity, offering a rapid, modular pathway to functional surfactants. Our findings demonstrate that this new surfactant not only self-assembles into thermodynamically stable structures but also exhibits superior binding affinity to key biomacromolecules like DNA and BSA, as validated by spectroscopy and docking studies. The strong and specific interactions underscore its potential for high-impact applications in biomedicine. This work redefines the design paradigm for cationic surfactants and addresses an urgent need for accessible yet high-performance agents in therapeutic and industrial settings.