Spontaneous rolling of a soft sphere on a vertical soft substrate†
Abstract
On perfectly vertical surfaces, rolling is conventionally deemed impossible without external torque. While various species like geckos and spiders exhibit vertical locomotion, they cannot achieve rolling; instead, they fall. In this study, we demonstrate the spontaneous rolling of a soft polyacrylamide sphere on a soft polydimethylsiloxane (PDMS) substrate held vertically at a 90° incline, given specific elasticity values for the materials. Our experiments uncover a slow rolling motion induced by a dynamically changing contact diameter and a unique contact asymmetry. The advancing edge behaves like a closing crack, while the receding edge acts as an opening crack. Utilizing adhesion hysteresis theories and crack propagation models, we explain how this contact asymmetry generates the necessary torque and friction to maintain rolling, preventing either pinning or falling. The findings challenge the traditional understanding of vertical surface interactions and open new avenues for exploring soft-on-soft contact systems. This novel phenomenon has potential implications for designing advanced materials and understanding biological locomotion on vertical surfaces.