Binary mixtures of active Brownian particles with distinct nonzero activities

Abstract

We computationally study suspensions of slow and fast active Brownian particles that have undergone motility induced phase separation and are in the steady state. Such mixtures, of varying non-zero activity, remain largely unexplored even though they are relevant in a plethora of systems and applications ranging from cellular biophysics to drone swarms. Our mixtures are modulated by their activity ratios (PeR), which we find to encode information by giving rise to three regimes, each of which display their unique emergent behaviors. Specifically, we found non-monotonic behavior of macroscopic properties, e.g. density and pressure, as a function of activity ratio, microphase separation of fast and slow particle domains, increased fluctuations on the interface and severe avalanche events compared to monodisperse active systems. Our approach of simultaneously varying the two activities of the particle species allowed us to discover these behaviors and explain the microscopic physical mechanisms that drive them.

Graphical abstract: Binary mixtures of active Brownian particles with distinct nonzero activities

Supplementary files

Article information

Article type
Paper
Submitted
03 Nov 2024
Accepted
17 Jun 2025
First published
17 Jul 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025, Advance Article

Binary mixtures of active Brownian particles with distinct nonzero activities

N. J. Lauersdorf, E. Nazockdast and D. Klotsa, Soft Matter, 2025, Advance Article , DOI: 10.1039/D4SM01290A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements