Issue 6, 2025

Self-assembly of chromatic patchy particles with tetrahedrally arranged patches

Abstract

The achievement of selectivity in the formation of cubic diamond is challenging due to the emergence of competing phases such as its hexagonal polymorph or clathrates possessing similar free energy. Although both polymorphs exhibit a complete photonic bandgap, cubic diamond exhibits it at lower frequencies than the hexagonal counterpart, positioning it as a promising candidate for photonic applications. Herein, we demonstrate that the 1 : 1 mixture of identical patchy particles cannot selectively form the cubic diamond polymorph due to the frustrations present in the system that are manifested in the primary adsorption layer and propagate as the film grows. We provide a plausible explanation for why the binary system under confinement, resembling interactions between the complementary DNA bases, cannot yield the selectivity in the formation of cubic diamond crystals, which is based on the similarities to the antiferromagnetic systems. We always observe a mixture of both hexagonal and cubic diamonds; however, the formation of such stacking hybrids is observed for a wider range of patch sizes compared to the one-component system.

Graphical abstract: Self-assembly of chromatic patchy particles with tetrahedrally arranged patches

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Oct 2024
Accepted
09 Jan 2025
First published
10 Jan 2025

Soft Matter, 2025,21, 1203-1211

Self-assembly of chromatic patchy particles with tetrahedrally arranged patches

D. Tarasewicz, E. Raczyłło, W. Rżysko and Ł. Baran, Soft Matter, 2025, 21, 1203 DOI: 10.1039/D4SM01210K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements