Issue 13, 2025

Eyring theory for plasticity in amorphous polymers violates Curie's principle

Abstract

In 1936, Eyring introduced a model for plastic flow which still forms the bedrock of practically all studies on plasticity of glassy polymers. Though the concept of activated process he introduced is fundamentally relevant, we argue here that under no circumstances can the Eyring model be correct as it violates Curie's principle, which is a basic physical requirement of statistical mechanics. An alternative model was proposed by [Long et al., Phys. Rev. Mater., 2018, 2, 105601] to describe the acceleration of the dynamics by an applied stress, in which the elastic energy stored at the length scale of dynamical heterogeneities ξ ≈ 3 – 5 nm reduces the free energy barriers for relaxation. While this model still considers α-relaxation as an activated process, as did Eyring, it fully complies with Curie's principle. It is based on a Landau expansion of the free energy barriers as a function of the applied stress. We argue that, due to the large length scale involved in the α-relaxation, only the leading quadratic order term should be retained, as higher order terms are negligible. We discuss a few recent experiments which confirm these features. This model opens the way to set glassy polymers plasticity into the realm of out-of-equilibrium statistical physics and condensed matter physics, which we argue is the appropriate framework for considering the physics of glass transition and mechanical properties of glassy polymers.

Graphical abstract: Eyring theory for plasticity in amorphous polymers violates Curie's principle

Article information

Article type
Paper
Submitted
24 Jul 2024
Accepted
27 Feb 2025
First published
03 Mar 2025

Soft Matter, 2025,21, 2502-2508

Eyring theory for plasticity in amorphous polymers violates Curie's principle

T. C. Merlette, E. Masnada, P. Sotta and D. R. Long, Soft Matter, 2025, 21, 2502 DOI: 10.1039/D4SM00894D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements