Issue 24, 2025

A 2D Co-MOF nanosheet for boosting alkaline water splitting through electrocatalytic urea oxidation

Abstract

The alkaline hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) are gaining considerable interest for boosting the overall water splitting in the context of green hydrogen production with simultaneous urea removal from wastewater. In this work, we successfully synthesized a novel cobalt-based two-dimensional (2D) metal–organic framework (MOF), named Co-IDBA-MOF, by a solvothermal method using a mixed ligand system consisting of 2,2′-iminodibenzoic acid (IDBA) and 4,4′-bipyridine (Bpy). Single-crystal X-ray analysis of the Co-IDBA-MOF confirmed its layered 2D structure. The bulk specimen of the MOF was further characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG) analysis, and UV-visible spectroscopic analysis. Field emission-scanning electron microscopic (FE-SEM), field emission gun-transmission electron microscopic (FEG-TEM) and atomic force microscopic (AFM) analyses uncovered the ultrathin 2D nanosheet-type morphology of the MOF, which facilitates the fabrication of 2D materials for the potential fabrication of real devices. This Co-IDBA-MOF exhibited good electrocatalytic performance in the alkaline HER at −0.241 V w. r. t. RHE at a current density of 10 mA cm−2 (η10) and a modest oxygen evolution reaction (OER) activity (1.66 V for 10 mA cm−2 w. r. t. RHE) in an alkaline water medium. However, the anodic potential got drastically reduced to 1.55 V after the addition of 0.33 M urea due to the urea oxidation reaction (UOR). The lowering of the Tafel slope and the concomitant increase in double-layer capacitance for the alkaline hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) suggested improved kinetics for overall water splitting after urea addition. Further variations in the urea concentration and the concentration of electrode materials can tune the UOR activity. This work aims to design a novel Co-MOF-based electrode material for bifunctional activity and large-scale green hydrogen production via the UOR.

Graphical abstract: A 2D Co-MOF nanosheet for boosting alkaline water splitting through electrocatalytic urea oxidation

Supplementary files

Article information

Article type
Paper
Submitted
22 Sep 2025
Accepted
20 Oct 2025
First published
20 Oct 2025

Sustainable Energy Fuels, 2025,9, 6784-6797

A 2D Co-MOF nanosheet for boosting alkaline water splitting through electrocatalytic urea oxidation

A. Ghosh, T. Sen and A. Bhaumik, Sustainable Energy Fuels, 2025, 9, 6784 DOI: 10.1039/D5SE01265A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements