Morphologically engineered S-InxZny bimetallic catalysts via an ionothermal approach for enhanced carbon dioxide electroreduction to formate†
Abstract
The conversion of carbon dioxide through electrochemical reduction (ECO2RR) offers a promising pathway for sustainable carbon cycling, yet the development of efficient catalysts remains challenged by the trade-off between activity and stability. Herein, we report a sulfur-modulated In–Zn bimetallic sulfide catalyst (S-In0.5Zn1) that achieves highly selective CO2-to-formate conversion via morphological engineering. The optimized catalyst demonstrates exceptional performance with a maximum formate faradaic efficiency (FE) of 95.2% at −1.36 V vs. RHE, coupled with outstanding long-term stability exceeding 80 hours. Systematic investigations reveal that Zn incorporation induces a microstructural reconstruction, forming a hierarchical nanoparticle-lamellar composite architecture. This unique morphology significantly enhances the specific surface area and establishes efficient mass transport pathways, effectively mitigating diffusion limitations for both CO2 reactants and critical *OCHO intermediates during electrocatalysis. The resultant reduction in kinetic barriers substantially improves the conversion efficiency of formate production. The findings not only introduce a metal sulfide catalyst system combining high activity and stability for ECO2RR but also provide fundamental structural insights for the rational design of advanced CO2 conversion electrocatalysts.

Please wait while we load your content...