Surface-modified titanium carbide MXene as an effective platform for the immobilization of toluidine blue and H2O2 biomarker detection in biological samples

Abstract

The development of reliable and cost-effective electrochemical sensors for hydrogen peroxide (H2O2) monitoring is crucial in biomedical diagnostics, especially in early disease diagnosis. Herein, we prudently synthesized an acid-functionalized COOH–Ti3C2Tx MXene, onto which a toluidine blue (TB) redox mediator was covalently immobilized and employed for the distinctive determination of H2O2. The synthesized COOH–Ti3C2Tx MXene is coated over a glassy carbon electrode (GCE), followed by the covalent immobilization of the electroactive TB dye through the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) coupling reaction. This in turn results in the firm anchoring of the TB dye by establishing a stable amide linkage between the –COOH group of COOH–Ti3C2Tx and the free –NH2 group of TB. Thus, the obtained TB/COOH–Ti3C2Tx/GCE sensor demonstrates an excellent electrocatalytic response for H2O2 determination over a broad linear range of 5 μM to 100 μM and 100 μM to 1.1 mM with a high sensitivity of 0.61 μA μM−1 cm−2 and a low detection limit of 1.5 μM. Notably, the fabricated electrode demonstrated exceptional stability and reproducibility as well as high selectivity and sensitivity in the detection of H2O2. Furthermore, the developed sensor showed very good recovery towards the detection of H2O2 in milk and serum samples. The attained analytical performance is attributed to the improved electrical wiring between the TB mediator and the conductive MXene platform.

Graphical abstract: Surface-modified titanium carbide MXene as an effective platform for the immobilization of toluidine blue and H2O2 biomarker detection in biological samples

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2025
Accepted
19 Aug 2025
First published
30 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Sens. Diagn., 2025, Advance Article

Surface-modified titanium carbide MXene as an effective platform for the immobilization of toluidine blue and H2O2 biomarker detection in biological samples

D. Mohanapriya and K. Thenmozhi, Sens. Diagn., 2025, Advance Article , DOI: 10.1039/D5SD00114E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements