Advancements in nonenzymatic electrochemical cholesterol detection: fostering material innovation with biosensing technologies
Abstract
Cholesterol, a sterol lipid, is vital for various biological phenomena encompassing metabolism and cell functioning. Nevertheless, drastic changes in cholesterol levels will lead to severe cardiovascular disorders. The development of point-of-care technology plays a prominent role in frequent and pinpoint monitoring of cholesterol changes. The introduction of enzymatic biosensors revolutionized cholesterol detection; however, these sensors face significant challenges, including restricted stability, high expense, and sensitivity to environmental conditions. This review highlights the advancements in non-enzymatic electrochemical cholesterol biosensors, focusing on the application of novel materials, including metals and metal oxides, carbon and graphene-based materials, polymeric materials, MOFs, MXenes, photoelectrochemical materials, and advanced materials and composites, to enhance sensitivity, selectivity, and stability. Particular emphasis is placed on electrochemical techniques, material modifications, and their influence on sensing performance. For ease of comprehension and evaluation, standard statistics have been presented in a tabular format. Despite significant advancements, challenges such as miniaturization, reproducibility, and real-sample analysis persist. This review underscores the potential of nonenzymatic electrochemical biosensors to transform biosensing diagnostics and emphasizes the need for continued innovation in materials science and device integration.

Please wait while we load your content...