Exploring the diagnostic synergy of isothermal amplification-integrated CRISPR technology for tuberculosis: a systematic review

Abstract

To address the problems linked with Mycobacterium tuberculosis (MTB) detection, we need an accurate, sensitive, and rapid detection method for efficient epidemiological management of tuberculosis (TB). Nucleic acid-based diagnosis of TB is more sensitive and specific but primarily requires trained workers and costly infrastructure. Isothermal amplification methods have paved the way for efficient and rapid diagnosis of TB due to their negligible infrastructure requirements; however, they sometimes suffer from drawbacks such as false-positive results and challenges in primer design. With progress in clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas)-integrated nucleic acid detection methods, the above limitations are being overcome in pathogen detection. The combination of CRISPR with any suitable isothermal amplification techniques such as recombinase polymerase amplification (RPA) or loop-mediated isothermal amplification (LAMP) offers several advantages due to its higher sensitivity, specificity, versatility and reproducibility as a point-of-care detection technique. Thus, in this systematic review, we aimed to provide a comprehensive overview of the various isothermal amplification methods coupled with CRISPR-based TB diagnostic studies that are reported in the literature. About 12 articles were included in this review using predefined selection criteria. Data were extracted for detailed review from PubMed, Google Scholar and ScienceDirect, and diagnostic efficiency was evaluated. The data uncovered that most of the studies were conducted in China, with IS6110 and IS6108 as the major target genes employed. The most used detection methods were based on fluorescence and lateral flow. Analytical sensitivity, defined by the limit of detection, ranged between 10 and 20 copies per μL. Diagnostic sensitivity and specificity were consistently high, ranging from 95 to 100%. Taken together, the synergy between isothermal amplification methods and CRISPR-Cas technique could serve as a potential alternative to qPCR, GeneXpert, and conventional acid-fast staining, particularly in low-resource regions for easy and rapid TB diagnosis.

Graphical abstract: Exploring the diagnostic synergy of isothermal amplification-integrated CRISPR technology for tuberculosis: a systematic review

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Tutorial Review
Submitted
30 May 2025
Accepted
26 Jul 2025
First published
01 Aug 2025
This article is Open Access
Creative Commons BY-NC license

Sens. Diagn., 2025, Advance Article

Exploring the diagnostic synergy of isothermal amplification-integrated CRISPR technology for tuberculosis: a systematic review

A. Kaushik, Y. Saini, Z. Fatima, J. Singh and S. Hameed, Sens. Diagn., 2025, Advance Article , DOI: 10.1039/D5SD00080G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements