Volume 4, 2025

The development of GFETs for biometric applications

Abstract

Due to the rising prevalence of chronic diseases worldwide attributed to an aging population and the development of big data and artificial intelligence (AI), there is a significant demand for healthcare and long-term disease monitoring. As an emerging sensing technology, graphene field-effect transistor (GFET) sensors are anticipated to become the backbone of future large-scale electronic applications, owing to their rapid and accurate disease diagnosis capabilities, excellent biocompatibility, and ease of system integration. This review summarizes the recent advances in biosensing applications using GFETs. Initially, the working mechanism of GFETs for biosensing is briefly introduced, followed by an outline of various gate configuration strategies employed in GFETs and a discussion on methods for enhancing sensing performance. The multiplexing capabilities and flexible wearable applications of GFETs are then summarized and highlighted, aiming to increase the diversity and applicability of these sensors. Subsequently, a comprehensive survey of the advancements in the integration and miniaturization of multi-component GFET biosensors is discussed. Moreover, this review provides an outlook on the challenges and prospects associated with the commercialization of GFET technology in the biosensing field.

Graphical abstract: The development of GFETs for biometric applications

Article information

Article type
Critical Review
Submitted
25 Sep 2024
Accepted
22 Nov 2024
First published
13 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Sens. Diagn., 2025,4, 111-135

The development of GFETs for biometric applications

W. Yang, W. Feng, S. Hou, Z. Hao, C. Huang and Y. Pan, Sens. Diagn., 2025, 4, 111 DOI: 10.1039/D4SD00317A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements