Machine Learning for Nonadiabatic Molecular Dynamics: Best Practices and Recent Progress

Abstract

Exploring molecular excited states holds immense significance across organic chemistry, chemical biology, and materials science. Understanding the photophysical properties of molecular chromophores is crucial for designing nature-inspired functional molecules, with applications ranging from photosynthesis to pharmaceuticals. Non-adiabatic molecular dynamics simulations are powerful tools to investigate the photochemistry of molecules and materials, but demand extensive computing resources, especially for complex molecules and environments. To address these challenges, the integration of machine learning has emerged. Machine learning algorithms can be used to analyse vast datasets and accelerate discoveries by identifying relationships between geometrical features and ground as well as excited-state properties. However, challenges persist, including the acquisition of accurate excited-state data and managing the complexity of the data. This article provides an overview of recent and best practices in machine learning for non-adiabatic molecular dynamics, focusing on pre-processing, surface fitting, and post-processing of data.

Article information

Article type
Perspective
Submitted
25 Jul 2025
Accepted
29 Aug 2025
First published
04 Sep 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Machine Learning for Nonadiabatic Molecular Dynamics: Best Practices and Recent Progress

C. Müller, Š. Sršeň, B. Bachmair, R. Crespo-Otero, J. Li, S. Mausenberger, M. Pinheiro, Jr., G. Worth, S. A. Lopez and J. Westermayr, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC05579B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements