Quenching mechanism in rotaxane mechanophores: insights from acene-based luminophores

Abstract

Rotaxane-based mechanophores that exploit spatial separation between a luminophore and a quencher are attractive due to their high structural design flexibility, enabling high-contrast changes in fluorescence intensity. However, it remains unclear whether their quenching mechanism is predominantly governed by photoinduced electron transfer (PET) or ground-state charge-transfer (CT) complex formation. This study unveils the quenching mechanism using rotaxane mechanophores incorporating π-extended anthracene, tetracene, or pentacene. In toluene, the quenching efficiency decreases with increasing π-conjugation of the fluorophore. Steady-state and transient absorption spectroscopy clarify that the fluorescence quenching of the anthracene-containing rotaxane is primarily due to PET, with a minor contribution from CT complex formation. In contrast, no clear CT complex formation is observed for the tetracene- and pentacene-containing mechanophores. PET moderately quenches the fluorescence for the tetracene-based system, while the low PET efficiency in the pentacene-containing mechanophore results in minimal quenching. Polyurethane elastomer films containing the anthracene-based mechanophore exhibit a significant increase in fluorescence intensity upon mechanical deformation. In contrast, almost no activation is observed for the pentacene-based mechanophore embedded in polyurethane. These findings clarify that PET is the primary quenching mechanism in rotaxane-based mechanochromic mechanophores, offering valuable insights for the future design of supramolecular mechanophores.

Graphical abstract: Quenching mechanism in rotaxane mechanophores: insights from acene-based luminophores

Supplementary files

Article information

Article type
Edge Article
Submitted
18 Jul 2025
Accepted
07 Oct 2025
First published
08 Oct 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2025, Advance Article

Quenching mechanism in rotaxane mechanophores: insights from acene-based luminophores

K. Nonaka, H. Sakai, R. Mori, N. Shimada, S. Hatatsu, T. Hasobe and Y. Sagara, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC05343A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements