Structural effects of arsine ligands on C–H difunctionalization of thiophene

Abstract

Despite their significant potential in organometallic chemistry, the utility of arsines as ligands in transition-metal catalysis remains underexplored relative to their phosphine counterparts. Although the Pd-catalyzed C–H difunctionalization of thiophene proceeds efficiently with triphenylarsine (AsPh3) but fails with conventional phosphine ligands, the synthetic utility of arsine ligands other than AsPh3 has not been explored. In this study, the steric and electronic requirements of the Pd-catalyzed C–H difunctionalization of thiophene are explored using 36 synthesized arsines and nine phosphines. Ligand parameterization reveals that arsines with moderate electron-donating abilities and sufficient steric accessibility were preferred. Notably, the identified steric demand is more readily met by arsines than by phosphines. Furthermore, arsines exhibit superior oxidative stability under reaction conditions that typically oxidize phosphines owing to the high oxophilicity of phosphorus. These experimental and computational findings demonstrate that the use of arsines can expand the scope of transition metal catalysts by enabling access to catalytic spaces that are less accessible with traditional phosphines.

Graphical abstract: Structural effects of arsine ligands on C–H difunctionalization of thiophene

Supplementary files

Article information

Article type
Edge Article
Submitted
16 Jul 2025
Accepted
09 Oct 2025
First published
10 Oct 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2025, Advance Article

Structural effects of arsine ligands on C–H difunctionalization of thiophene

A. Sumida, K. Yamamoto, T. Iwamoto, K. Naka and H. Imoto, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC05285H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements