Reactivity of organic photocatalysts displaying thermally activated delayed fluorescence (TADF): rationalizing unexpected differences between rates of quenching of the lowest singlet and triplet states

Abstract

Cyanoarene chromophores exhibiting thermally activated delayed fluorescence (TADF) are increasingly used in photoredox catalysis. At high concentrations of organic substrates, which are typically employed in preparative synthesis, the primary photoinduced electron transfer (PeT) steps in the photocatalytic processes can involve both singlet (S1) and triplet (T1) excited states of TADF chromophores, despite very short lifetimes (nanoseconds) of the former. However, the difference between the reactivities of these states is not well understood, while being critically important for the photocatalytic process. In this work, three representative TADF chromophores were examined in reductive and oxidative PeT quenching reactions. First, using kinetic simulations, we assert that Stern–Volmer quenching plots based on the experimentally measured prompt and delayed fluorescence lifetimes, but not integrated intensities, yield accurate bimolecular rate constants for the PeT quenching reactions involving S1 and T1 excited states. Secondly, experimental measurements of prompt and delayed fluorescence reveal significantly higher quenching constants for reductive quenching of S1 compared to T1 states, while for oxidative quenching the rate constants are nearly equal. Electronic structure calculations provide insight into the difference between the PeT rates for reductive quenching, suggesting that it might stem from the different spatial hole–electron distributions in S1 and T1 states. Taken together, our findings bring crucial information about the photocatalytic process involving TADF chromophores that should aid the design of the next-generation of TADF photocatalysts.

Graphical abstract: Reactivity of organic photocatalysts displaying thermally activated delayed fluorescence (TADF): rationalizing unexpected differences between rates of quenching of the lowest singlet and triplet states

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
04 Jul 2025
Accepted
29 Sep 2025
First published
07 Oct 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Reactivity of organic photocatalysts displaying thermally activated delayed fluorescence (TADF): rationalizing unexpected differences between rates of quenching of the lowest singlet and triplet states

F. Fina, C. Bellatreccia, X. Wu, P. G. Cozzi, A. Troisi, S. Vinogradov and P. Ceroni, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC04948B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements