High throughput screening for the design of protein binding polymers

Abstract

Using polymers for protein encapsulation can enhance stability in processing environments and prolong activity and half-life in vivo. However, finding the best polymer structure for a target protein can be difficult, labour- and cost-intensive. In this study we introduce a high throughput screening approach to identify strong polymer–protein interactions by use of Förster Resonance Energy Transfer (FRET), enabling a rapid read out. We iteratively screened a total of 288 polymers containing varying hydrophilic, hydrophobic, anionic and cationic monomers against a panel of eight different enzymes (glucose oxidase, uricase, manganese peroxidase, bovine serum albumin, carbonic anhydrase, lysozyme, trypsin and casein). By optimisation of the assay conditions it was possible to read out strongly binding polymers at protein concentrations down to 0.1 μM. We were able to use the screening data to locate moderately selective polymer binders in most cases, and elucidate general trends in polymer design that lead to strong binding. Interestingly, these trends are not consistent across proteins, underscoring the value of a screening approach for identification of the best polymers. We applied this technique to identify lead polymers suitable for encapsulation of the important therapeutic protein TNF-related apoptosis-inducing ligand (TRAIL), at a concentration of 0.25 μM (5 μg mL−1). This approach should be valuable in the design of polymers for either selective protein binding, or for universal protein repulsion, particularly where the protein is too expensive to work with at high concentrations and large volumes.

Graphical abstract: High throughput screening for the design of protein binding polymers

Supplementary files

Article information

Article type
Edge Article
Submitted
16 Jun 2025
Accepted
25 Jun 2025
First published
01 Jul 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

High throughput screening for the design of protein binding polymers

C. Bapp, A. Z. Mustafa, C. Cao, E. J. Wanless, M. H. Stenzel and R. Chapman, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC04391C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements