A mechanism-guided inverse engineering framework to unlock design principles of H-bonded organic frameworks for gas separation
Abstract
The diverse combinations of novel building blocks offer a vast design space for hydrogen-bonded organic frameworks (HOFs), rendering them highly promising for gas separation and purification. However, the underlying separation mechanism facilitated by their unique hydrogen-bond networks has not yet been fully understood. In this work, a comprehensive understanding of the separation mechanisms was achieved through an iterative data-driven inverse engineering approach established upon a hypothetical HOF database possessing nearly 110 000 structures created by a materials genomics method. Leveraging a simple yet universal feature extracted from hydrogen bonding information with unambiguous physical meanings, the entire design space was exploited to rapidly identify the optimization route towards novel HOF structures with superior Xe/Kr separation performance (selectivity > 103). This work not only provides the first large-scale HOF database, but also demonstrates the enhanced machine learning interpretability of our model-driven iterative inverse design framework, offering new insights into the rational design of nanoporous materials for gas separation.