Improving the optical nonlinearity of covalent organic frameworks through spatial electron transport channels within the pore environment

Abstract

The influence of spatial electron transport channels in covalent organic frameworks (COFs) on third-order nonlinear optical (NLO) performance remains largely unknown. Herein, we present a method for preparing host–guest (H–G) COF composites with diverse pore environments to investigate their NLO performance. Pt nanoparticles (NPs) were selected as guests and confined into two novel azo/ethylene-decorated highly crystalline Azo-COF and Et-COF. The synthesized Pt NPs@Azo-COF and Pt NPs@Et-COF exhibit better NLO performance than Azo-COF and Et-COF under laser irradiation in the near-infrared to the visible range. In the near-infrared range (1064 nm), the reverse saturable absorption (RSA) of Pt NPs@Azo-COF and Pt NPs@Et-COF has increased by 4.62-fold and 3.25-fold, respectively, and the corresponding self-defocusing properties have also increased by 3.01-fold and 2.17-fold. Moreover, with the confinement of Pt NPs, the NLO absorption of Azo-COF and Et-COF changed from saturable absorption (SA) to RSA in the visible range (532 nm). Theoretical calculations and transient absorption demonstrate that the superior NLO performance of Pt NPs@Azo-COF is attributed to the reduction of the band-filling effect of excited states caused by the charge transfer between Pt NPs and Azo-COF, thereby optimizing the absorption cross-section of the ground state and excited state. This study expands the application range of COFs in the NLO field and opens a new avenue for improving NLO properties by modulating the pore environment.

Graphical abstract: Improving the optical nonlinearity of covalent organic frameworks through spatial electron transport channels within the pore environment

Supplementary files

Article information

Article type
Edge Article
Submitted
09 Jun 2025
Accepted
11 Aug 2025
First published
21 Aug 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Improving the optical nonlinearity of covalent organic frameworks through spatial electron transport channels within the pore environment

K. Geng, Y. Wei, Y. Sun, J. Huang, J. Wu and H. Hou, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC04193G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements