Design and synthesis of macrocycles with tuneable diameters and helical foldamers with customizable peripheral side chains

Abstract

Tubular structures with nanosized pores have shown remarkable applications in areas such as ion transport and water filtration, but their development is often hindered by challenges including low yields, limited functionalization, and poor uniformity. Herein, we present a new series of macrocycles with tuneable diameters and helical foldamers featuring customizable peripheral side chains. The macrocycles, with diameters ranging from 0.8 to 1.4 nm, were synthesized in moderate to good yields using a one-pot method. Solid-state analysis revealed that these macrocycles form nanochannels, highlighting their potential applications in areas such as molecular recognition and artificial water channels (AWCs). Additionally, we synthesized helical aromatic amide polymers with narrow dispersities via a living chain-growth process. Our strategy enables the incorporation of diverse functional groups, including ethers, esters, acids, and amides, on the outer surfaces of the macrocycles or synthetic nanotubes. Circular dichroism (CD) spectroscopy confirmed the helical conformations of the polymers in solution. These macrocycles and foldamers present exciting opportunities for designing bioinspired membrane channels and functional nanotubes with tuneable hydrophobicity and cavity sizes, paving the way for innovative applications in nanotechnology and materials science.

Graphical abstract: Design and synthesis of macrocycles with tuneable diameters and helical foldamers with customizable peripheral side chains

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
06 Jun 2025
Accepted
15 Sep 2025
First published
06 Oct 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Design and synthesis of macrocycles with tuneable diameters and helical foldamers with customizable peripheral side chains

S. Farooq, A. Crochet and A. F. M. Kilbinger, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC04138D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements