Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules
Abstract
Quantum computing has the potential to reduce the computational cost required for quantum dynamics simulations. However, existing quantum algorithms for coupled electron-nuclear dynamics simulation either require fault-tolerant devices, or involve the Born-Oppenheimer (BO) approximation and pre-calculation of electronic states on classical computers. We present the first quantum simulation approach for molecular vibronic dynamics in a pre-BO framework with an analog mapping of nuclear degrees of freedom, i.e. without the separation of electrons and nuclei, by mapping the molecular Hamiltonian to a device with coupled qubits and bosonic modes. We perform a proof-of-principle emulation of our ansatz using a single-mode model system which represents vibronic dynamics of chemical systems, such as nonadiabatic charge transfer involving polarization of the medium, and propose an implementation of our approach on a trapped-ion device. We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms. Furthermore, our approach has a much smaller resource and implementation scaling than the existing pre-BO quantum algorithms for chemical dynamics. The low cost of our approach will enable an exact treatment of electron-nuclear dynamics on near-term quantum devices.