Lateral π-Extended Helical Nanographenes with Large Spin Polarization
Abstract
The possibility that current passing through an organic molecule becomes spin-polarized is highly intriguing. Amongst these molecules, helicene units have recently been shown to exhibit such a chiral-induced spin selectivity (CISS) effect. Thus, helical nanographenes (NGs), whose core building block is helicene unit, are natural candidates for generating CISS. However, reports on the CISS effect in helical nanographenes (NGs) remain limited, primarily due to the lack of a suitable molecular platform for detecting spin-selective transport. In this work, we have developed synthetic strategy using pre-fused key bonds in oligophenylene precursors and successfully synthesized lateral extended NGs that incorporate either single or double undecabenzo[7]helicene units with high yields. The resultant lateral extended helical NGs display excellent chiroptical properties including strong circular dichroism and large dissymmetry factors. Furthermore, magneto-conductive atomic force microscopy (mc-AFM) and magnetoresistance (MR) measurements show clear evidence for spin polarization of the current with a large spin polarization of up to 80% and a robust MR of 1.5% at room temperature. Together with theoretical modeling, our results identify lateral extended helical NGs as promising quantum materials for future organic spintronic devices.