Supramolecular polymerization of permanently dipolar perylene diimide-based diazacoronenes

Abstract

We demonstrate that ground-state dipoles guides the supramolecular assembly and resultant optoelectronic characteristics of perylene diimide-based diazacoronenes (PDACs). The synthetic difficulty of installing permanent ground-state dipoles on planar aromatic systems has largely constrained the exploration of dipole engineering in discotic molecules. Here, we synthesize a family of PDACs with ground-state dipoles between 1 and 6 Debye by installing functional groups on the diazacoronene. Systematically increasing the dipolar character of these PDACs led to red-shifted absorption (477 to 557 nm) and emission spectra (483 to 723 nm), which is consistent with their more negative electrochemical reduction potentials. Density functional theory revealed that sufficiently strong dipoles (PDAC-NMe2, 6.0 Debye) led to ground-state charge-transfer, which was confirmed by a combination of electrochemical and spectroscopic measurements. Molecular dynamics simulations predicted that PDACs with larger ground-state dipole moments have stronger intramolecular interactions and more well-defined assemblies. Variable-solvent, -concentration, and -temperature aggregation studies were consistent with this trend and, in all cases, revealed that supramolecular polymerization led to more extended electronic delocalization. Additionally, we observed that PDAC assemblies with larger ground state dipoles had enhanced emission lifetimes over their monomer counterparts (τ = 1.8 ns to 5.1 ns for PDAC-NMe2), whereas assemblies formed from molecules with smaller ground-state dipoles had virtually no change in their excited state lifetimes. Taken together, permanent ground-state dipoles are shown to be a powerful tool to control planar molecular assemblies and their optoelectronic characteristics.

Graphical abstract: Supramolecular polymerization of permanently dipolar perylene diimide-based diazacoronenes

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
16 May 2025
Accepted
03 Jul 2025
First published
10 Jul 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Supramolecular polymerization of permanently dipolar perylene diimide-based diazacoronenes

Ani. N. Davis, C. M. Sullivan, C. Fu, R. Roy, A. M. M. Hasan, K. Slicker, H. Li, L. Nienhaus and A. M. Evans, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC03568F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements