Breaking the Heavy-Atom Paradigm: Weak-Donor-Engineered Triplet Harvesting in BODIPY Photosensitizers for Immunogenic Pyroptosis Therapy

Abstract

Boron-dipyrromethene (BODIPY)-based dyes emerge as promising agents for phototherapy; however, traditional methods to enhance spin-orbit coupling (SOC) through halogenation introduce dark toxicity and limit therapeutic applications. Here, we present a thiophene-bridged BODIPY functionalized scaffold with carbazole-benzothiophene (Cbz-Bth) substituents at the 2,6-positions. This design employs a weak yet semi-rigid donor to destabilize charge-transfer (CT) states, enabling T₂-mediated spin-orbit charge-transfer intersystem crossing (SOCT-ISC). The resulting photosensitizer, Cbz-Bth-BDP, demonstrates effective reactive oxygen species generation and the photocatlytic transformation of biomolecules such as nicotinamide adenine dinucleotide (NADH) and cytochrome c (Cyt c). Notably, Cbz-Bth-BDP induces pyroptosis by activating gasdermin E (GSDME), leading to cell swelling and the release of intracellular content. In a 3D tumor spheroid model, Cbz-Bth-BDP significantly inhibits tumor growth by reducing adenosine triphosphate (ATP) levels. This study highlights the advantages of accessing higher excited triplet states and positions Cbz-Bth-BDP as a promising, heavy-atom-free photosensitizer for cancer treatment through pyroptosis activation.

Supplementary files

Article information

Article type
Edge Article
Submitted
13 May 2025
Accepted
14 Jul 2025
First published
14 Jul 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Breaking the Heavy-Atom Paradigm: Weak-Donor-Engineered Triplet Harvesting in BODIPY Photosensitizers for Immunogenic Pyroptosis Therapy

H. S. Kim, H. Rha, M. Izadyar, S. Chanmungkalakul, H. Huang, Y. Y. Kang, J. Ka, Y. Xu, M. Li, X. Liu and J. S. Kim, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC03466C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements