Enhancing Photoredox Catalysis by Suppressing Back Electron Transfer with the Aid of a Spin Catalyst

Abstract

While organic dye-based photoredox catalysis provides a sustainable platform for inert bond activation, its efficiency remains limited by detrimental back electron transfer (BET) processes. Herein, we present a spin catalysis strategy that addresses this challenge by manipulating the spin kinetics of radical ion pairs (RIPs) using Gd-DOTA as a spin catalyst. In photocatalytic hydrodechlorination of methyl 4-chlorobenzoate, this approach achieved a remarkable spin catalysis effect (SCE) of 70%, accompanied by a 25-fold acceleration in reaction kinetics (65% conversion in 25 min vs. 640 min without spin catalyst). The generality of SCE was demonstrated across diverse substrates spanning varied functional groups and halides (Cl/Br/I). Through integrated time-resolved spectroscopic measurements and density functional theory calculations, we established a quantitative kinetic model revealing that the Gd(III) center promotes spin conversion of RIPs from singlet to triplet states, thereby effectively suppressing BET to enhance forward reaction flux. This work pioneers the integration of spin catalysis strategy into photoredox systems, offering both a mechanistic framework for spin-state manipulation in reaction engineering and a transformative kinetic approach to boost catalytic efficiency beyond current thermodynamic consideration solely based on redox properties.

Supplementary files

Article information

Article type
Edge Article
Submitted
29 Apr 2025
Accepted
16 Aug 2025
First published
19 Aug 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Enhancing Photoredox Catalysis by Suppressing Back Electron Transfer with the Aid of a Spin Catalyst

Z. Dong, C. Chen, L. Chen, M. Sun, J. Zhan, S. Zhou, L. Cao, J. Liu, S. Bai, J. Jie, H. Su, S. Gao and L. Zhou, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC03124A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements