Iodide-mediated intermediate regulation strategy enables high-capacity and ultra-stable zinc–iodine batteries†
Abstract
The practical implementation of aqueous zinc–iodine (Zn–I2) batteries is hindered by the limited cathode capacity, rampant Zn dendrite formation, and anode corrosion issues. In this work, we propose a novel iodide-mediated intermediate regulation strategy achieved through a rationally designed combination of zinc iodide (ZnI2) and high-loading cathodes. Mechanistic studies reveal that iodide ions (I−) generate abundant iodine active sites on the elemental iodine-embedded porous carbon cathode (I2@PAC), which facilitates the conversion of under-oxidized triiodide (I3−) to pentaiodide (I5−), thereby significantly enhancing cathode capacity. Concurrently, the I− coordinate with Zn2+ to suppress the decomposition of coordinated water molecules, effectively mitigating side reactions and enabling dendrite-free Zn deposition morphology. These mechanisms collectively contribute to exceptional Coulombic efficiency (>99.7%) and outstanding cycling stability. The optimized Zn–I2 full cell achieves a remarkable specific capacity of 250.2 mAh g−1 at 0.2 A g−1, along with ultralong cycling durability exceeding 10 000 cycles while maintaining 85% capacity retention. This iodide-mediated intermediate regulation strategy provides a viable pathway for developing high-capacity and ultra-stable aqueous Zn–I2 batteries.
- This article is part of the themed collection: 2025 Chemical Science HOT Article Collection