Transition Metal-Free vs. Metal-Catalyzed Cyclotrimerization of Didehydro[8]annulenes (COTynes): A Complex Pathway to Non-Planar PAHs – Dewar Benzenes vs. Benzotri[8]annulenes

Abstract

The formation of non-planar PAHs from didehydro[8]annulene (COTyne) cycloadditions was investigated under both transition metal-catalyzed (Pd, Ru) and metal-free conditions. The observed reactivity depended on the planarity of the COTyne and the reaction conditions. Parent COTyne 1a dimerized into naphthocyclooctatetraene under TM-free conditions, whereas Pd(0) catalysis promoted its cyclotrimerization into benzotri[8]annulene 7. X-ray characterization and its dynamic behavior in solution was investigated. Planar dibenzoCOTyne 1b exhibited different reactivity depending on its formation method (in situ or preformed), the metal catalyst (Pd, Ru), and absence of catalysts. Under Pd(0) catalysis, cyclotrimerization yielded benzo-fused tri(dibenzo[8]annulene) 3 with moderate efficiency, regardless of how 1b was generated. The presence of K+ had no significant effect compared to tribenzoCOTyne 1c. Without metal catalysts, 1b predominantly formed the corresponding Dewar benzene 2. With Ru(II) catalysts, reactivity was influenced by both the generation method of 1b and the Cp ligand. When generated in situ, 1b was an inefficient ligand for CpRu, leading to Dewar benzene formation, whereas preformed 1b produced 3 in moderate yields. The competition between Dewar benzene and benzo-fused tri(dibenzo[8]annulene) formation increased with greater steric hindrance at the Ru center (CpRu vs. Cp*Ru catalysts). Dewar benzene formation likely proceeds via a cyclobutadiene intermediate followed by cycloaddition.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
25 Apr 2025
Accepted
07 May 2025
First published
08 May 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Transition Metal-Free vs. Metal-Catalyzed Cyclotrimerization of Didehydro[8]annulenes (COTynes): A Complex Pathway to Non-Planar PAHs – Dewar Benzenes vs. Benzotri[8]annulenes

J. Bello García, J. A. Varela and C. Saá, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC03035H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements