The influence of protein electrostatics on potentialinversion in flavoproteins

Abstract

Biology uses relatively few electron-transfer cofactors, tuning their potentials, electronic couplings, and reorganization energies to carry out the required chemistry. It is remarkable that the potential ordering of two-electron transfer active flavins can be normal (first oxidation at low potential, second oxidation at high potential) or inverted, and the gap between the potentials can be as large as one Volt. Analysis based on structural bioinformatics and electrostatics indicates that the ordering of the flavin redox potential is influenced by protein electrostatics. In all 36 flavoproteins examined, the introduction of a negative charge near the flavin in silico increases the extent of potential inversion (by lowering the electrochemical potential of the second electron-transfer step); the introduction of a positive charge near the flavin favors normally ordered potentials. We also find that the addition of positive charges increases the electrochemical potential for the naturally occurring one-electron transition in flavodoxins (between deprotonated hydroquinone and neutral semiquinone) and also increases the second one-electron transition in bifurcating flavins (between anionic semiquinone and fully oxidized flavin). Finally, we find that proximity of a proton acceptor, notably conserved arginine, supports proton-coupled electron transfer because it may act as a proton acceptor, promoting potential inversion. This key arginine residue may enable two-electron transfer chemistry by promoting the proton-coupled electron transfer process over the pure electron transfer process, suggesting how a protein’s flavin environment may influence one- or two-electron chemistry in flavoproteins.

Article information

Article type
Edge Article
Submitted
23 Apr 2025
Accepted
26 Aug 2025
First published
27 Aug 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

The influence of protein electrostatics on potentialinversion in flavoproteins

N. Singh, P. Zhang and D. N. Beratan, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC02960K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements