Bulk and Interface Engineering of Prussian Blue Analogues Cathodes for High-Performance Sodium-Ion Batteries

Abstract

Prussian blue analogues (PBAs) possess a unique three-dimensional crystal structure, which provides ample space for the movement of sodium ions (Na+), making them an ideal choice for cathode materials in sodium-ion batteries (SIBs). However, the bulk phase of PBAs typically contains amounts of crystal water and vacancies, which compromise the integrity of the lattice and impede the migration of Na+. Additionally, interface-related issues, such as side reactions and the dissolution of transition metal ions, severely limit the reversible capacity and cycle stability of PBAs-based cathode materials. Therefore, addressing these challenges from bulk and interface of PBAs is critical for the development of high-performance cathode materials for SIBs. This review aims to provide insights into potential strategies for overcoming these limitations and enhancing the electrochemical performance of PBAs. Firstly, the structure, morphology, and reaction mechanisms of PBAs are summarized systematically. The key challenges hindering the commercialization of PBAs are then categorized in this review. Several effective strategies for addressing these challenges are provided, including bulk phase engineering (thermal treatment, element doping, and etching), interface engineering (coating, ion exchange, and electrolyte additives), and the co-regulation of bulk and interface. Finally, the future commercialization prospects of PBAs are discussed, highlighting the necessary steps for transitioning from laboratory-scale research to industrial-scale production.

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Review Article
Submitted
17 Apr 2025
Accepted
29 May 2025
First published
09 Jun 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Accepted Manuscript

Bulk and Interface Engineering of Prussian Blue Analogues Cathodes for High-Performance Sodium-Ion Batteries

B. Zhou, Y. Gao, X. Lin, B. Yang, N. Kang, Y. Qiao, H. Zhang, L. Li and S. Chou, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC02819A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements