Brush-modified fluorescent organic nanoparticles by ATRP with rigidity-regulated emission

Abstract

Organic nanoparticles provide exceptional intraparticle tailorability, enabling the incorporation of functional molecules for diverse applications. In this study, we present the synthesis and characterization of fluorescent organic nanoparticles (FoNPs) with encapsulated aggregation-induced emission (AIE) luminogens with emission properties regulated by particle rigidity. Atom transfer radical polymerization (ATRP) was employed in dispersed media to develop various fluorescence colors tuned by precise control over particle rigidity. Comprehensive analyses revealed that increased particle rigidity significantly enhanced photoluminescence, achieving quantum yields of up to 22% in selected solvents. The high chain-end fidelity facilitated the grafting of hydrophilic polymer brushes from surfaces of FoNPs used as macroinitiators, enabling their dispersion in aqueous media while maintaining bright fluorescence. These findings highlight the potential of rigidity-regulated FoNPs as versatile platforms for advanced material applications, particularly in fluorescent waterborne films and aqueous-phase sensing systems.

Graphical abstract: Brush-modified fluorescent organic nanoparticles by ATRP with rigidity-regulated emission

Supplementary files

Article information

Article type
Edge Article
Submitted
27 Mar 2025
Accepted
29 Apr 2025
First published
30 Apr 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Brush-modified fluorescent organic nanoparticles by ATRP with rigidity-regulated emission

R. Yin, L. Luo, X. Hu, H. Murata, J. Jeong, F. Gao, Z. Qiu, B. Z. Tang, M. R. Bockstaller and K. Matyjaszewski, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC02349A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements