Formation of open ruthenium branched structures with highly exposed active sites for oxygen evolution reaction electrocatalysis†
Abstract
The formation of exposed active sites that have high activity and stability for oxygen evolution reaction (OER) catalysis is a significant opportunity for improving water electrolysers. Low-index facets surface Ru can achieve both high activity and stability for OER. Here, we present a new catalyst design where low-index faceted Ru branches are grown off the corners of Pt nanocubes, forming open Ru branched nanoparticles. This open branched structure, exposing low-index facets on its length-tunable branch, enables a high electrochemically active surface area (ECSA), achieving high activity and stability for OER. This design strategy and synthetic control provide a principle for achieving high-performance OER nanocatalysts.