Precise construction of spiro stereocenters via enantioselective radical addition through modulating photocatalysis from redox to energy transfer

Abstract

Chiral hydrogen-bonding catalysis has been successfully applied in a wide range of asymmetric photocatalytic radical-based reactions. However, it faces intrinsic challenges in the reactions that rely on oxidative quenching to initiate transformations. A critical issue arises from the formation of anionic side intermediates, which preferentially interact with protons from chiral catalysts, undermining the essential enantiocontrol required for effective product formation. In this study, we demonstrate that creating energy transfer instead of single-electron transfer to trigger these transformations presents a promising solution. As a proof-of-concept, we report the first photocatalytic spirocyclization of olefinic sulfonyl oximes with vinyl azides, furnishing a diverse array of spiroaminals with high yields (up to 94%) and enantioselectivities (up to 99% ee). The success of this method hinges on employing a sulfonyl group as an N-protective group for oximes, which facilitates energy transfer as an alternative mechanism to initiate the transformation. This approach not only enhances reactivity and chemoselectivity but also creates an optimal environment for enantiocontrol. The synthetic significance of this work is underscored by the establishment of these products as a novel class of chiral ligands, with preliminary studies indicating their effectiveness in asymmetric alkynylation reactions.

Graphical abstract: Precise construction of spiro stereocenters via enantioselective radical addition through modulating photocatalysis from redox to energy transfer

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
27 Feb 2025
Accepted
09 May 2025
First published
09 May 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2025, Advance Article

Precise construction of spiro stereocenters via enantioselective radical addition through modulating photocatalysis from redox to energy transfer

F. Liu, Y. Guo, W. Lu, X. Zhao, Y. Yin and Z. Jiang, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC01583A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements