Do weaker solvation effects mean better performance of electrolytes for lithium metal batteries?†
Abstract
The design of novel electrolytes is crucial for ensuring the practical application of high-voltage lithium metal batteries (LMBs). Weakly solvating electrolytes (WSEs), achieved by reducing the solvent's solvation ability, have been shown to improve the cycling stability of LMBs. However, the internal relationship between the weaker solvation effects of the solvent and battery performance is not well understood. In this work, we design a series of solvents with different solvation effects, using 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) as base skeletons, and systematically examine the physicochemical and electrochemical properties of these WSEs. Our results show that the performance of WSEs is not solely determined by the solvation structure but is also influenced by the intrinsic reactivity of the solvent. Guided by this principle, we develop a high-performance electrolyte based on 2-methoxy-1,3-dioxolane (2-MeO DOL), which exhibits both weak solvation effects and low reactivity. This electrolyte enables stable cycling of Li–Cu half cells for over 250 cycles with a coulombic efficiency of 99.3% and demonstrates stable cycling in Li–LiNi0.8Co0.1Mn0.1O2 (NCM811) full cells at a 4.4 V cut-off voltage under practical conditions. This study offers critical insights for the design and high-throughput screening of next-generation high-performance WSEs for LMBs.