Issue 17, 2025

Narrowband multi-resonance pure-red emitters via enhanced molecular orbital delocalization for high-performance organic light-emitting diodes

Abstract

Multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) materials with pure-red gamut are in demand for high-definition organic light-emitting diode (OLED) displays. To achieve efficient pure-red OLEDs with excellent color purity, we report three novel MR-TADF emitters: PhCzBN, PhBCzBN, and BCzBN, which integrate a dibenzo[c,g]carbazole segment into a para-boron/oxygen-embedded framework, resulting in the progressive extension of the molecular conjugation. This extension of the π-conjugated skeleton enhances frontier molecular orbital (FMO) delocalization and red-shifts the emission, yielding pure-red emission in toluene with satisfactory peak positions and narrow linewidths. The sensitized OLEDs incorporating PhCzBN, PhBCzBN, and BCzBN exhibit maximum external quantum efficiencies of 31.5%, 33.6%, and 33.8%, respectively. The current efficiencies of these devices reach as high as 42.5 cd A−1, which is higher than reported pure-red emitters with comparable CIE coordinates. Notably, the devices based on BCzBN demonstrate an emission peak at 636 nm and superior CIE coordinates of (0.700, 0.300), closely aligning with the BT.2020 requirements for the red gamut. This work presents a straightforward yet effective approach for developing high-performance pure-red MR-TADF OLEDs, marking a substantial advancement in wide-color gamut display technologies.

Graphical abstract: Narrowband multi-resonance pure-red emitters via enhanced molecular orbital delocalization for high-performance organic light-emitting diodes

Supplementary files

Article information

Article type
Edge Article
Submitted
23 Feb 2025
Accepted
17 Mar 2025
First published
18 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 7495-7502

Narrowband multi-resonance pure-red emitters via enhanced molecular orbital delocalization for high-performance organic light-emitting diodes

X. Wang, T. Hua, N. Li, G. Chen, Z. Chen, J. Miao, X. Cao and C. Yang, Chem. Sci., 2025, 16, 7495 DOI: 10.1039/D5SC01439E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements