Exogenous chemically-driven electromagnets

Abstract

Magnetically-driven dynamic systems have gained considerable attention in multiple applications ranging from cargo delivery to environmental remediation. However, they commonly require ferromagnetic components or sophisticated electromagnetic equipment. In this work we take advantage of the synergy between exogenous bipolar electrochemistry and the classic geometry of a solenoid in order to design an externally driven chemo-electromagnet. By wirelessly triggering redox reactions at each extremity of a solenoid-shaped swimmer, the generated electric current follows the helical path of the coil, thus generating a concentric magnetic field in its center. Such an externally induced redox current generates magnetic fields in the range of μT which are proportional to the applied electric field. The on-board chemically induced magnetic dipole allows the swimmers to perform rotational motion in the presence of an external magnetic field, without the use of traditional ferromagnetic materials. Additionally, when exposing these devices to alternating electric and magnetic fields, well-defined oscillatory motion is produced, demonstrating the efficient electromagnetic control of the dynamic displacement. This opens up novel and, so far, unexplored possibilities for localized chemical conversion via magnetically-driven “chemistry on-the-fly”.

Graphical abstract: Exogenous chemically-driven electromagnets

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
04 Feb 2025
Accepted
14 Jun 2025
First published
16 Jun 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2025, Advance Article

Exogenous chemically-driven electromagnets

C. Lozon, A. Cornet, S. Reculusa, P. Garrigue, A. Kuhn and G. Salinas, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC00911A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements